Calculus III

Review Test II

Summer 2006

 

1.       Eliminate the parameter, then solve for y, and sketch the graph for each of the parametric functions below.

a.      

 

 

b.        
 

 

 

2.       Find  and  (formula given on test) for .

 

 

3          

a         Find the arc length for the parametric equation.  Show the set-up and the result.

 

b         Find the arc length for the parametric equation.Show the set-up and the result.

 

 

4         Sketch the following two polar curves, by finding a chart of their polar coordinates on  at intervals of.

a        

 

b          
 

 

 

5.       Find a chart of coordinates on , which contains the key points necessary for finding the area of the region common to the interior of the polar curves  and . Set-up, but do not solve the integrals.

 

 

 

 

6.       Start with the Law of Cosines, find an alternate form of  by squaring .  Then, derive the formula for the dot product of vectors and, , that involves the cosine of the angle between vectors  and .

 

 

 

 

7.        

a.       Find the angle between the vectors a = (1,2) & b = (3,4), expressed inform.

 

 

b.       Normalize the vectors a and b.

 

 

8.       If a Force of 10 Newtons is applied at an angle of 30 degrees and moves an object 0.5 meters, what is the amount of work done?

 

 

9.        

a.       Find the vector sum for the vectors u = (1,2,3) and v = (5,7,9)

 

 

b.      Find the vector from u to v.

.

 

c.       What is the angle between the vectors u and v?

 

 

10.    

a.       Determine whether the points (1,-1,5), (0,-1,6), and (3,-1,3) lie on a straight line.

 

 

b.       Find the direction cosines of the point (3,-1,5).