Module 15: EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Exploring Calculus

In this module we will look at two functions which are very different from those which we have discussed before--the exponential function and the logarithmic function . They are two of the most useful functions for solving  real world  problems in biology, business, chemistry, engineering and physics.
 

Critical Thinking Questions
 

1. a. In each of the functions f (x) http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage55%7d.gif, g (x) = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage56%7d.gif, and h (x) = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage57%7d.gif, is the base a variable or a constant?

    b.Click here to display the graph.Display the graph for the three functions above and fill in the chart below for for x = -5, -2, 0, 2, 5 ?
 

x

f (x)

g (x)

h (x)

-5

.

.

.

-2

.

.

.

0

.

.

.

2

.

.

.

5

.

.

.

    c. For x > 0 , which function grows the fastest and which function decays the fastest?
 

2. The function y = b x, b > 0 , (if b equals 1, it is not an exponential function. Why ? ) is called the exponential function.  It behaves like  yhttp://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage59%7d.gif, when  b >_____ , and like y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage60%7d.gif when 0 < b < _____.
 

3. The most important base is the number e .

    a. Using your calculator complete the following table.
 

n

http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage61%7d.gif

http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage62%7d.gif

1

.

.

10

.

.

100

.

.

1,000

.

.

10,000

.

.

100,000

.

.

1,000,000

.

.

10,000,000

.

    b. Now use your calculator to find the approximate value for e to nine decimal places.

    c. Fill in the blanks.

        _____http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage63%7d.gif =_____ .

    d. Sketch a graph of y http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage64%7d.gif , y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage65%7d.gif and y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage66%7d.gif for the x-values - 2, - 1 , 0 , 1 and 2 on the grid below.

http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage67%7d.gif


The inverse of the function y = f (x) is the function x = f (y) , which when solved for y is written as http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage68%7d.gif .  Read http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage69%7d.gif  as:  f inverse of x .
 

When the point (x , y) is on the graph of y = f (x) , its  inverse  point (y , x) is on the graph of http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage68%7d.gif.
 

4. Given y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage71%7d.gif

    a. Switch x and y and solve for y. The resulting function y = _____ is the inverse of  yhttp://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage72%7d.gif.

    b. If we know that the point (2, 8) is on the graph of f (x) http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage74%7d.gif , then we know the point _____ is on the graph of  y = f -1(x).

Click here to display the graph.Display the graph.
    c. What is the equation of the line graphed in yellow? What relationship do the graphs of f (x) and f -1(x) have to each other and to this line?
 

The domain of http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage68%7d.gif  is the range of  y = f (x), and the range of http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage68%7d.gifis the domain of  y = f (x).
 

5. What is the inverse of y http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage78%7d.gif ? State its domain and range. Click here to display the graph.    Display the graph.    HintThe radicand must be >= 0.
 

6.  a. What is the relationship between the graphs of http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage81%7d.gif (the natural exponential function) and http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage82%7d.gif (the natural logarithmic function)? (This may--but is generally not--be written as http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage83%7d.gif.)

Click here to display the graph.Display the graph.

    b. What are domain and range of each function?
 
 

Skill Exercises
 
 

Review  the rules of exponents and logarithms and take the practice Test.

1. a. Any exponential equation may be written as a logarithmic equation. That is, the equation y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage85%7d.gif may be written as_____ =http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage86%7d.gif_____ .

    b. In particular, since http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage87%7d.gif = _____ , we may also write http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage88%7d.gif _____ = _____ ; and  since http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage89%7d.gif = _____ , we may also write http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage90%7d.gif _____ = _____ .

    c. Furthermore, since http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage91%7d.gif = _____ , we can also say that ln _____ = 0 ; and since http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage92%7d.gif = _____ , we can also say that ln _____ = 1 .
 

2. Use your calculator to find ln 2 , ln 3 , and ln 4 .

Click here to display the graph.Display the graph.  Note the area under the function y = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage94%7d.gif above the t-axis on each of the intervals [1,2] , [1,3] , and [1,4] .
 

    a. Use the above information to help you fill in the blank in the upper limit of the integral below.

http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage95%7d.gif

    b. If F(x) = http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage96%7d.gif , what is F ' (x)? (This is the Fundamental Theorem of Calculus.)

    c. Now, if F(x) is the integral in part a. above (with the upper limit correctly identified), what is F ' (x)?
 

3. Let y http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage97%7d.gif .
 

    Take ln of both sides of this equation : ln y = _____ .
 

    Use logarithm rules and simplify : ln y = _____ .
 

    Implicitly differentiate this equation : _____ = _____.Click here for help with differentiating ln y.Hint

    Solve for http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage99%7d.gifhttp://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage100%7d.gif = _____ .

    Now, rewrite "y" in terms of x : http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage101%7d.gif = _____ .

    Explain what you have derived.
 
 

4. Suppose that http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage102%7d.gif is proportional to y , written http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage103%7d.gifα y .

    Then we know that http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage104%7d.gif = _____ y .

    We may then separate the variables to obtain http://faculty.ycp.edu/~dkaplan/ExplCalc/Modules/Module15/mod170%7bimage105%7d.gif = k_____ .
 

    Now, integrate both sides of the equation to obtain  _____ y = _____. Click here for help with integrating dy/y.Hint
 

    Solve the above equation for "y" , by letting y(0) = y0 , to obtain y = _____.
 

    Rewrite the equation above as y = _____e k t.  The value of y at t = 0 is called  y0.
 

    Rewrite the above equation using  y0 .
 

    You have derived the Law of Growth and Decay , y = _____.
 
 

5. Use the law of growth and decay to solve the following problem. The Polonium isotope 210 Po has a half-life of approximately 140 days. If a sample weighs 20 milligrams initially, how much remains after t days? Approximately how much will be left after two weeks?

Click here for help applying the Exponential Growth Law.Hint
 
 

This is the last module!

Click here to take the assessment test for Module 15.

Exploring Calculus




































































.
 
 

This document was served by the faculty/staff web server and is not an official college document.
This document was last modified on 19-Feb-01.
This document was served by the faculty/staff web server and is not an official college document.
This document was last modified on 19-Feb-01.
This document was served by the faculty/staff web server and is not an official college document.
This document was last modified on 21-Feb-01.
This document was served by the faculty/staff web server and is not an official college document.
This document was last modified on 16-Jul-01.